
 DSTH01

Revision 1.00 Page of 16 Oct. 2013

1

DSTH01
Digital Temperature Humidity Sensor Module V1.00

Features:

Applications

 I2C host interface

 Temperature range: -40°C ~+85°C

 Temperature accuracy: ±0.5°C (typical)

 ±1°C (Max. @0~70°C)

 RH operating range: 0~100%

 RH accuracy: ±3% (typical)

 Wake up time: 10ms

 Operating voltage range: 2.1~3.6V

 Integrated on-chip heater

 Low power consumption

 Excellent long term stability

 Factory calibrated

 Industrial HVAC/R

 Thermostats / humidistats

 Respiratory therapy

 Automotive climate control

 Asset and goods tracking

DESCRIPTION

DSTH01 is a type of digital relative humidity and temperature sensor module which integrates

temperature and humidity sensor elements, an analog-to-digital converter, signal processing,

calibration data and an I2C host interface. Both the temperature and humidity sensors are

factory-calibrated and the calibration data is stored in the on-chip non-volatile memory which

ensures the DSTH01 modules are fully interchangeable and no recalibration or software changes

are required.

Necessary components are integrated on the DSTH01 modules so users can get a quick start with

the microcontroller with extra design. The sensor top is covered with silicon gel which can protect

the sensor from the dust and other particles. The module works at 2.1~3.6V. It consumes about

240uA during RH conversion. and 1.5mA in normal work mode. The DSTH01 module offers an

accurate and factory-calibrated solution for embedded applications ranging from HVAC/R system

to consumer electronic products.

 DSTH01

Revision 1.00 Page of 16 Oct. 2013

2

PIN FUNCTIONS

1

2

3

4

5

Figure 1: DSTH01 Pin Layout

PIN DIP Function Description

1 GND Ground Ground (0V)

2 SCK Input I2C serial port, clock pin

3 SDA Input/output I2C serial port, data pin

4 /CS Input Chip selection, low effective

5 VCC Power Power supply

Table 1: DSTH01 Pin functions

ELECTRICAL SPECIFICATIONS

Symbol Parameter (condition) Min. Typ. Max. Units

VCC Supply Voltage 2.1 3.3 3.6 V

Temp Temperature operating range -40 25 85 °C

 14 bit
TR

(1) Temperature resolution
 1/32 °C

 ±0.5 ±1 °C
TA

(2)
Temperature accuracy: typical @25°C

 Maximum See figure 2 °C

TRN Temperature repeatability-noise
 0.1

°C

RMS

TRT
(3) Response time to reach 63% of final value 1.5 s

TLS Temperature long term stability <0.05 °C/yr

RH(4) Relative humidity operating range 0 100 %

HR
(5) Humidity resolution 12 bit

 ±3 ±4.5
HA

(6)
Humidity accuracy: 20~80%RH

 0~100%RH See figure 3
%RH

HRN Humidity repeatability-noise
 0.05

%RH

RMS

 DSTH01

Revision 1.00 Page of 16 Oct. 2013

3

HRT
(7) Response time @ 1m/s airflow 8 s

HH Hysteresis ±1 %RH

HLS Humidity long term stability ≤0.25 %RH

 240 560 uA

 320 565 uA IDD

Current. @ RH conversion in progress

 @ Temp conversion in progress

 @ Heater enabled, on conversion in progress 24 31 mA

TCON
Conversion time. @ 14-bit temp, 12-bit RH (fast=0)

 @ 13-bit temp, 11-bit RH (fast=1)

 35

18

40

21
ms

TPU Power up time 10 15 ms

Table 2: DSTH01 Electrical Specifications

Notes:

⑴. The DSTH01 module has a nominal output of 32 codes /°C, with 0000=-50°C

⑵. Temperature sensor accuracy is for VDD = 2.3 to 3.6 V.

⑶. Actual response times will vary dependent on system thermal mass and air-flow.

⑷. Recommended humidity operating range is 20 to 80%RH (non-condensing) over 0 to 60℃. Prolonged

operation beyond these ranges may result in a shift of sensor reading, with slow recovery time.

⑸. The DSTH01 module has a nominal output of 16 codes per %RH, with 0h0000=-24%RH.

⑹. Excludes hysteresis, long-term drift, and certain other factors and is applicable to non-condensing

environments only.

⑺. Time for sensor output to reach 63% of its final value after a step change.

Figure 2: DSTH01 RH Accuracy at 30°C

 DSTH01

Revision 1.00 Page of 16 Oct. 2013

4

Figure 3: DSTH01 Temperature Accuracy

Symbol Parameter (condition) Min. Typ. Max. Units

VHYS Hysteresis 0.05*VCC V

FSCL SCLK frequency 400 kHz

TSKH SCL high time 0.6 us

TSKL SCL low time 1.3 us

TSTH Start hold time 0.6 us

TSTS Start setup time 0.6 us

TSPS Stop setup time 0.6 us

TBUS Bus free time between stop and start 1.3 us

TDS SDA setup time 100 ns

TDH SDA hold time 100 ns

TVD SDA valid time 0.9 us

TVT SDA acknowledge time 0.9 us

Table 3: I2C Interface Specifications

 DSTH01

Revision 1.00 Page of 16 Oct. 2013

5

Figure 4: I2C Interface Timing Diagram

ABSOLUTE MAXIMUM RATINGS

Symbol Parameter Min. Max. Units

VD Voltage on VCC with respect to GND -0.3 4.2 V

VI2C Voltage on SDA or SCL pin with respect to GND -0.3 3.9 V

TAT
(1) Ambient temperature under bias -55 125 °C

TST Storage temperature -55 150 °C

Table 4: DSTH01 Maximum Ratings

Notes: For best accuracy, the DSTH01 module should be stored in climate controlled conditions (10 to

35°C, 20 to 60%RH). Exposure to high temperature and/or high humidity environments can cause a

small upwards shift in RH readings.

HOST INTERFACE

1. I2C Interface

The DSTH01 sensor module has an I2C serial interface with a 7-bit address of 0x40. It is a

slave device supporting data transfer with rates up to 400 kHz. The table 5 shows the register

summary of the DSTH01 modules. Users can configure related values to obtain corresponding

temperature and humidity parameters.

Register Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0x00 STATUS RSVD RSVD RSVD RSVD RSVD RSVD RSVD /RDY

0x01 DATAh Relative humidity or temperature, High byte

0x02 DATAl Relative humidity or temperature, Low byte

0x03 CONFIG RSVD RSVD FAST TEMP RSVD RSVD HEAT START

 DSTH01

Revision 1.00 Page of 16 Oct. 2013

6

0x11 ID ID3 ID2 ID1 ID0 0 0 0 0

Table 5: Summary of Registers

Please note that any register address which is not listed here is reserved and must not be

written. The Reserved Register Bits (RSVD) must always written as zero; the result of a read

operation on these bits is undefined.

2. Performing a Relative Humidity Measurement

The following steps must be executed in sequence in order to take a relative humidity

measurement.

(1). Set START bit (bit0) and clear TEMP bit (bit4) in CONFIG register (0x03) to begin a new conversion,

i.e.: write CONFIG (0x03) with value 0x01

(2). Poll RDY(D0) in STATUS register (0x00) until it is low (=0).

(3). Read the upper and lower bytes of the RH value from DATAh and DATAL registers (0x01 & 0x02)

respectively.

DATAh DATAl

D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0

12-bit relative humidity code 0 0 0 0 0

Table 6: 12-bit Relative Humidity Result in Registers DATAh and DATAl

(4). Convert the RH value to %RH with the equation: %RH = (RH/16)-24, which the RH is the measured

value returned in DATAh & DATAl.

(5). Apply temperature compensation and /or linearization which will be discussed in the following section.

The table below shows the values that corresponding to various measured RH levels.

12 Bit Code
%RH

Dec Hex

0 384 180

10 544 220

20 704 2C0

30 864 360

40 1024 400

50 1184 4A0

60 1344 540

70 1504 5E0

80 1664 680

90 1824 720

100 1984 7C0

Table 7: Typical %RH Measurement Codes for 0 to 100% RH Range

The above sequence assumes to be in normal mode, Tconv=35ms (typical). Conversion also

can be performed in fast mode.

 DSTH01

Revision 1.00 Page of 16 Oct. 2013

7

3. Performing a Temperature Measurement

(1). Set START bit (bit0) and TEMP bit (bit4) in CONFIG register (0x03) to begin a new conversion, i.e.:

write CONFIG (0x03) with value 0x11

(2). Poll RDY(D0) in STATUS register (0x00) until it is low (=0).

(3). Read the upper and lower bytes of the RH value from DATAh and DATAL registers (0x01 & 0x02)

respectively.

DATAh DATAl

D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0

12-bit relative humidity code 0 0 0 0 0

Table 8: 14-bit Temperature Result in Registers DATAh and DATAl

 (4). Convert the value to temperature with the equation: Temperature(°C) = (TEMP/32)-50, which the

TEMP is the measured value returned in DATAh & DATAl.

14 Bit Code
TEMP(°C)

Dec Hex

-40 320 0140

-30 640 0280

-20 960 03C0

-10 1280 0500

0 1600 0640

10 1920 0780

20 2240 08C0

30 2560 0A00

40 2880 0B40

50 3200 0C80

60 3520 0DC0

70 3840 0F00

80 4160 1040

90 4480 1180

100 4800 12C0

Table 9: Typical Temperature Measurement Codes for -40°C to 100°C Range

4. Normal Conversion Mode and Fast Conversion Mode

The switch between two modes is realized by setting the value of FAST (bit5) in CONFIG

register (0x03). Fast=0 is normal mode and Fast=1 is fast mode.

Mode TCON (Typical) Temperature Resolution Humidity resolution

Normal Mode 35ms 14-bit 12-bit

Fast Mode 18ms 13-bit 11-bit

Table 10: Normal Conversion Mode vs Fast Conversion Mode

 DSTH01

Revision 1.00 Page of 16 Oct. 2013

8

5. Heater

The sensor chip on DSTH01 module integrates a resistive heating element which may be used

to raise the temperature of the humidity sensor. This element can be used to drive off

condensation or to implement dew-point measurement when the module is used in

conjunction with a separate temperature sensor such as another DSTH01 module.

The heater can be activated by setting HEAT (D1) in CONFIG (register 0x03). Turning on the

heater will reduce the tendency of the humidity sensor to accumulate an offset due to

“memory” of sustained high humidity conditions. When the heater is enabled, the reading of

the on-chip temperature sensor will be affected (increased).

6. I2C Operation

If the DSTH01 module shares the I2C bus with other slave devices, it should be powered

down when the master controller is communicating with the other slave devices, which can

be realized either by setting /CS to logic high or setting the VCC pin to 0V. User can power

off the module by using GPIO pin to control the VCC of DSTH01 module. Please note that

users must consider the driving current of GPIO when using the heater function of the module,

in which function the current of the enabled heater might consumes the current more than

30mA (seeing the table of ELECTRIC SPECIFICATIONS).

A6 A5 A4 A3 A2 A1 A0 R/W

1 0 0 0 0 0 0 1/0

Table 11: I2C Slave Address Byte

(1). I2C write operation

To write a register on DSTH01 module, the master should issue a start command (S)

followed by the slave address-0x40. The slave address should be followed by a 0 to

indicate that the operation is a write. Upon recognizing its slave address, the DSTH01

issues an acknowledge (A) by pulling the SDA line low for the high duration of the ninth

SCL cycle. The next bye which the master places on the bus is the register address

pointer, selecting the register on the DSTH01 to which the data should be transferred.

After the DSTH01 acknowledges this byte, the master places a data byte on the bus. This

byte will be written to the register selected by the address pointer. The DSTH01 module

will acknowledge the data byte, after which the master issues a Stop command (P).

Master Slave

Table 12: Identification for Master and Slave Data

S Slave Address W A Address Pointer A Register Data A P

Table 13: Sequence to Write a Register

 DSTH01

Revision 1.00 Page of 16 Oct. 2013

9

S 0x40 0 A 0x03 A 0x01 A P

Table 14: Sequence to Start a Relative Humidity Conversion

S 0x40 0 A 0x03 A 0x11 A P

Table 15: Sequence to Start a Temperature Conversion

(2). I2C read operation

To read a register on the DSTH01 module, the master must first set the address pointer to

indicate the register from which the data is to be transferred. The master should issue a

start command (S) followed by the slave address---0x40. The slave address is followed by

a 0 to indicate that the operation is a write. Upon recognizing its slave address, the

DSTH01 will issue an acknowledge (A) by pulling the SDA line low for the high duration

of the ninth SCL cycle. The next byte the master places on the bus is the register address

pointer selecting the register on the DSTH01 from which the data should be transferred.

After the DSTH01 acknowledges this byte, the master issues a repeated start command

(Sr) indicating that a new transfer is to take place. The DSTH01 is addressed once again

with the R/W bit set to 1, indicating a read operation. The DSTH01 will acknowledge its

slave address and output data from the previously-selected register onto the data bus

under the control of the SCL signal, the master should not acknowledge (A
—

) the data byte
and issue a stop (P) command. However, if a RH or Temperature conversion result (two

bytes) is to be read, the master should acknowledge (A) the first data byte and continue to

activate the SCL signal. The DSTH01 will automatically output the second data byte.

Upon receiving the second byte, the master should issue a not Acknowledge (A
—

) followed
by a stop command.

S Slave Address W A Address Pointer A Sr Slave Address R A Register Data A
—

 P

Table 16: Sequence to Read from a Single Register

S 0x40 0 A 0x11 A Sr 0x40 1 A ID A
—

 P

Table 17: Sequence to Read Device ID

S 0x40 0 A 0x11 A Sr 0x40 1 A --- R

D

Y

A
—

P

Table 18: Sequence to Read R

D

Y

 Bit

S
Slave

Address
W A

Address

Pointer
A Sr

Slave

Address
R A

Register1

Data
A

Register2

Data
A
—

 P

S 0x40 0 A 0x01 A Sr 0x40 1 A Data H A Data L A
—

 P

Table 19: Sequence to Read Conversion Result

 DSTH01

Revision 1.00 Page of 16 Oct. 2013

10

APPLICATION CODES
This section shows the basic communication between DSTH01 and STM8 microcontroller

through I2C interface. Reading temperature and relative humidity parameters are demonstrated in

the codes.

#include "stm8l10x.h"

#define SDA_H GPIO_SetBits(GPIOC, GPIO_Pin_0)

#define SDA_L GPIO_ResetBits(GPIOC, GPIO_Pin_0)

#define SCK_H GPIO_SetBits(GPIOC, GPIO_Pin_1)

#define SCK_L GPIO_ResetBits(GPIOC, GPIO_Pin_1)

#define SDA GPIO_ReadInputDataBit(GPIOC,GPIO_Pin_0)

#define SlaveAddress 0x40

#define RegisterAddress0 0x00

#define RegisterAddress1 0x01

#define RegisterAddress2 0x02

#define RegisterAddress3 0x03

#define RegisterAddress11 0x11

void CLK_INT(void);

void GPIO_INT(void);

void DELAY(uint16_t n);

void I2C_START(void);

void I2C_STOP(void);

void I2C_WRITE(uint8_t Data);

uint8_t I2C_READ(void);

void I2C_ACK(uint8_t a);

uint8_t I2C_SEND(uint8_t SlaveAdd,uint8_t RegisterAdd,uint8_t *s);

uint8_t I2C_RECEIVE(uint8_t SlaveAdd,uint8_t RegisterAdd,uint8_t *s);

void Temperature_READ(uint8_t *s);

void RelativeHumidity_READ(uint8_t *s);

uint8_t Ack;

uint8_t id;

uint8_t RelativeHumidity;

uint8_t Temperature;

uint8_t Start1=0x01;

uint8_t Start2=0x11;

 DSTH01

Revision 1.00 Page of 16 Oct. 2013

11

void main()

{

 CLK_INT();

 GPIO_INT();

 I2C_RECEIVE(SlaveAddress,RegisterAddress11,&id);

 while (1)

 {

 RelativeHumidity_READ(&RelativeHumidity);

 Temperature_READ(&Temperature);

 }

}

void CLK_INT()

{

 CLK_DeInit();

 DELAY(500);

 CLK_CCOCmd(ENABLE);

 CLK_MasterPrescalerConfig(CLK_MasterPrescaler_HSIDiv1);

}

void GPIO_INT()

{

 GPIO_DeInit(GPIOC);

 GPIO_Init(GPIOC,GPIO_Pin_1,GPIO_Mode_Out_PP_Low_Slow);

 GPIO_Init(GPIOC,GPIO_Pin_0,GPIO_Mode_Out_OD_Low_Slow);

}

void DELAY(uint16_t n)

{

 uint8_t i;

 while(n--)

 {

 for(i=0;i<16;i++);

 }

}

void I2C_START()

{

 SDA_H;

 SCK_H;

 SDA_L;

 SCK_L;

 DSTH01

Revision 1.00 Page of 16 Oct. 2013

12

}

void I2C_STOP()

{

 SDA_L;

 SCK_H;

 SDA_H;

}

void I2C_WRITE(uint8_t Data)

{

 uint8_t i;

 for(i=0;i<8;i++)

 {

 if(Data&0x80)

 SDA_H;

 else

 SDA_L;

 SCK_H;

 SCK_L;

 Data<<=1;

 }

 SDA_H;

 SCK_H;

 if(SDA==1)

 Ack=0;

 else

 Ack=1;

 SCK_L;

}

uint8_t I2C_READ()

{

 uint8_t Data=0;

 uint8_t i;

 SDA_H;

 for(i=0;i<8;i++)

 {

 SCK_L;

 SCK_H;

 Data<<=1;

 if(SDA==1)

 Data=Data+1;

 DSTH01

Revision 1.00 Page of 16 Oct. 2013

13

 }

 SCK_L;

 return Data;

}

void I2C_ACK(uint8_t a)

{

 if(a==0)

 SDA_L;

 else

 SDA_H;

 SCK_H;

 SCK_L;

}

uint8_t I2C_SEND(uint8_t SlaveAdd,uint8_t RegisterAdd,uint8_t *s)

{

 SlaveAdd=SlaveAdd<<1;

 I2C_START();

 I2C_WRITE(SlaveAdd);

 if(Ack==0)

 return 0;

 I2C_WRITE(RegisterAdd);

 if(Ack==0)

 return 0;

 I2C_WRITE(*s);

 if(Ack==0)

 return 0;

 I2C_STOP();

 return 1;

}

uint8_t I2C_RECEIVE(uint8_t SlaveAdd,uint8_t RegisterAdd,uint8_t *s)

{

 SlaveAdd=SlaveAdd<<1;

 I2C_START();

 I2C_WRITE(SlaveAdd);

 if(Ack==0)

 return 0;

 I2C_WRITE(RegisterAdd);

 if(Ack==0)

 return 0;

 I2C_START();

 DSTH01

Revision 1.00 Page of 16 Oct. 2013

14

 I2C_WRITE(SlaveAdd+1);

 if(Ack==0)

 return 0;

 *s=I2C_READ();

 I2C_ACK(1);

 I2C_STOP();

 return 1;

}

void RelativeHumidity_READ(uint8_t *s)

{

 uint8_t Status=1;

 uint8_t RelativeHumidityH;

 uint8_t RelativeHumidityL;

 uint16_t RelHum;

 I2C_SEND(SlaveAddress,RegisterAddress3,&Start1);

 while(Status==1)

 {

 I2C_RECEIVE(SlaveAddress,RegisterAddress0,&Status);

 }

 I2C_RECEIVE(SlaveAddress,RegisterAddress1,&RelativeHumidityH);

 I2C_RECEIVE(SlaveAddress,RegisterAddress2,&RelativeHumidityL);

 RelHum=RelativeHumidityH;

 RelHum=RelHum<<8;

 RelHum+=RelativeHumidityL;

 RelHum=RelHum>>4;

 *s=RelHum/16-24;

}

void Temperature_READ(uint8_t *s)

{

 uint8_t Status=1;

 uint8_t TemperatureH;

 uint8_t TemperatureL;

 uint16_t Temp;

 I2C_SEND(SlaveAddress,RegisterAddress3,&Start2);

 while(Status==1)

 {

 I2C_RECEIVE(SlaveAddress,RegisterAddress0,&Status);

 }

 I2C_RECEIVE(SlaveAddress,RegisterAddress1,&TemperatureH);

 I2C_RECEIVE(SlaveAddress,RegisterAddress2,&TemperatureL);

 Temp=TemperatureH;

 DSTH01

Revision 1.00 Page of 16 Oct. 2013

15

 Temp<<=8;

 Temp+=TemperatureL;

 Temp>>=2;

 *s=Temp/32-50;

}

MECHANICAL DATA
Unit: mm

9.80

9.80

1.40

2.36

1.27

0.90

2.50

Figure 5: DSTH01 Dimensions

 DSTH01

Revision 1.00 Page of 16 Oct. 2013

16

Dorji Applied Technologies

A division of Dorji Industrial Group Co., Ltd

Add.: Xinchenhuayuan 2, Dalangnanlu, Longhua,

Baoan district, Shenzhen, China 518109

Tel: 0086-755-28156122

Fax.: 0086-755-28156133

Email: sales@dorji.com

Web: http://www.dorji.com

Dorji Industrial Group Co., Ltd reserves the right to

make corrections, modifications, improvements and

other changes to its products and services at any time

and to discontinue any product or service without

notice. Customers are expected to visit websites for

getting newest product information before placing

orders.

These products are not designed for use in life support

appliances, devices or other products where

malfunction of these products might result in personal

injury. Customers using these products in such

applications do so at their own risk and agree to fully

indemnify Dorji Industrial Group for any damages

resulting from improper use.

